Thursday, August 18, 2011

Windows domains and domain users


a domain is a group of computers that run on Windows operating systems. Amongst them is a computer that holds all the information related to user authentication and user database and is called the domain controller (server), whereas every user who is part of this user database on the domain controller is called a domain user. Domain users have access to any resource across the domain and its subdomains with the privilege they have, unlike the standalone user who has access to the resources available to a specific system.
With the release of Windows Server 2000, Microsoft released Active Directory (AD), which is now widely used with Windows operating system networks to store, authenticate, and control users who are part of the domain. A Windows domain uses various modes to authenticate users—encrypted passwords, various handshake methods such as PKI, Kerberos, EAP, SSL certificates, NAP, LDAP, and IP Sec policy—and makes it robust authentication. One can choose the authentication method that suits business needs and based on the environment.
Let's now see various authentication methods in detail.
Public Key Infrastructure (PKI): This is the most common method used to transmit data over insecure channels such as the Internet using digital certificates. It has generally two parts—the public and private keys. These keys are generated by a Certificate Authority, such as, Thawte. Public keys are stored in a directory where they are accessible by all parties. The public key is used by the message sender to send encrypted messages, which then can be decrypted using the private key.
Kerberos: This is an authentication method used in client server architecture to authorize the client to use service(s) on a server in a network. In this method, when a client sends a request to use a service to a server, a request goes to the authentication server, which will generate a session key and a random value based on the username. This session key and a random value are then passed to the server, which grants or rejects the request. These sessions are for certain time period, which means for that particular amount of time the client can use the service without having to re-authenticate itself.
Extensible Authentication Protocol (EAP): This is an authentication protocol generally used in wireless and point-to-point connections.


SSL Certificates: A Secure Socket Layer certificate (SSL) is a digital certificate that is used to identify a website or server that provides a service to clients and sends the data in an encrypted form. SSL certificates are typically used by websites such as GMAIL. When we type a URL and press Enter, the web browser sends a request to the web server to identify itself. The web server then sends a copy of its SSL certificate, which is checked by the browser. If the browser trusts the certificate (this is generally done on the basis of the CA and Registration Authority and directory verification), it will send a message back to the server and in reply the web server sends an acknowledgement to the browser to start an encrypted session.
Network Access Protection (NAP): This is a new platform introduced by Microsoft with the release of Windows Server 2008. It will provide access to the client, based on the identity of the client, the group it belongs to, and the level compliance it has with the policy defined by the Network Administrators. If the client doesn't have a required compliance level, NAP has mechanisms to bring the client to the compliance level dynamically and allow it to access the network.
Lightweight Directory Access Protocol (LDAP): This is a protocol that runs over TCP/IP directly. It is a set of objects, that is, organizational units, printers, groups, and so on. When the client sends a request for a service, it queries the LDAP server to search for availability of information, and based on that information and level of access, it will provide access to the client.
IP Security (IPSEC): IP Security is a set of protocols that provides security at the network layer. IP Sec provides two choices:
Authentication Header: Here it encapsulates the authentication of the sender in a header of the network packet.
Encapsulating Security Payload: Here it supports encryption of both the header and data.
Now that we know basic information on Windows domains, domain users, and various authentication methods used with Windows servers

No comments:

Post a Comment